- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adams, Davis (1)
-
Adams, Davis W. (1)
-
Majji, Manoranjan (1)
-
Peck, Caleb (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a navigation system for autonomous rendezvous, proximity operations, and docking (RPOD) with respect to non-cooperative space objects using a novel velocimeter light detection and ranging (LIDAR) sensor. Given only raw position and Doppler velocity measurements, the proposed methodology is capable of estimating the six degree-of-freedom (DOF) relative velocity without any a priori information regarding the body of interest. Further, the raw Doppler velocity measurement field directly exposes the body of interest’s center of rotation (i.e. center of mass) enabling precise 6-DOF pose estimation if the rate estimates are fused within a Kalman filter architecture. These innovative techniques are computationally inexpensive and do not require information from peripheral sensors (i.e. gyroscope, magnetometer, accelerometer etc.). The efficacy of the proposed algorithms were evaluated via emulation robotics experiments at the Land, Air and Space Robotics (LASR) laboratory at Texas A&M University. Although testing was completed with a single body of interest, this approach can be used to online estimate the 6-DOF relative velocity of any amount of non-cooperative bodies within the field-of-view.more » « less
-
Adams, Davis W.; Peck, Caleb; Majji, Manoranjan (, AIAA SCITECH 2022 Forum)This paper presents a Multiplicative Extended Kalman Filter (MEKF) framework using a state-of-the-art velocimeter Light Detection and Ranging (LIDAR) sensor for Terrain Relative Navigation (TRN) applications. The newly developed velocimeter LIDAR is capable of providing simultaneous position, Doppler velocity, and reflectivity measurements for every point in the point cloud. This information, along with pseudo-measurements from point cloud registration techniques, a novel bulk velocity batch state estimation process and inertial measurement data, is fused within a traditional Kalman filter architecture. Results from extensive emulation robotics experiments performed at Texas A&M’s Land, Air, and Space Robotics (LASR) laboratory and Monte Carlo simulations are presented to evaluate the efficacy of the proposed algorithms.more » « less
An official website of the United States government

Full Text Available